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Rhythm is key to language acquisition. Across languages, rhythmic features highlight

fundamental linguistic elements of the sound stream and structural relations among

them. A sensitivity to rhythmic features, which begins in utero, is evident at birth. What

is less clear is whether rhythm supports infants’ earliest links between language and

cognition. Prior evidence has documented that for infants as young as 3 and 4 months,

listening to their native language (English) supports the core cognitive capacity of object

categorization. This precocious link is initially part of a broader template: listening to a

non-native language from the same rhythmic class as (e.g., German, but not Cantonese)

and to vocalizations of non-human primates (e.g., lemur, Eulemur macaco flavifrons, but

not birds e.g., zebra-finches, Taeniopygia guttata) provide English-acquiring infants the

same cognitive advantage as does listening to their native language. Here, we implement

a machine-learning (ML) approach to ask whether there are acoustic properties,

available on the surface of these vocalizations, that permit infants’ to identify which

vocalizations are candidate links to cognition. We provided the model with a robust

sample of vocalizations that, from the vantage point of English-acquiring 4-month-olds,

either support object categorization (English, German, lemur vocalizations) or fail to

do so (Cantonese, zebra-finch vocalizations). We assess (a) whether supervised ML

classification models can distinguish those vocalizations that support cognition from

those that do not, and (b) which class(es) of acoustic features (including rhythmic, spectral

envelope, and pitch features) best support that classification. Our analysis reveals that

principal components derived from rhythm-relevant acoustic features were among the

most robust in supporting the classification. Classifications performed using temporal

envelope components were also robust. These new findings provide in principle evidence

that infants’ earliest links between vocalizations and cognition may be subserved by

their perceptual sensitivity to rhythmic and spectral elements available on the surface

of these vocalizations, and that these may guide infants’ identification of candidate links

to cognition.
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1. INTRODUCTION

The link between human language and cognition affords us
exceptional communicative and representational power. By
virtue of this link, we are able establish mental representations,
ones that permit us to move beyond the present to consider
the past and imagine the future, and to communicate
these representations with others (Miller, 1990). Within the
developmental sciences, considerable attention has been devoted
to discovering how, and how early, this language-cognition
link is established (Perszyk and Waxman, 2018 for a recent
review). Considerable evidence has been derived from behavioral
experiments measuring infant object categorization. Object
categorization is a fundamental building block of cognition.
In human infants, as in adults, categorization is supported by
language (Gelman, 2004; Waxman and Gelman, 2009). Indeed,
language supports infants’ ability to form categories (Waxman
and Markow, 1995; Perszyk and Waxman, 2018).

The evidence comes from a simple, yet robust object
categorization task (Ferry et al., 2010, 2013; Perszyk and
Waxman, 2019; Woodruff Carr et al., 2021b). During a
familiarization phase, infants view a series of distinct objects,
all members of the same object category (e.g., images of 8
different dinosaurs). Next, during the test phase, infants view two
novel objects—one a member of the familiarized category (e.g.,
another dinosaur) and the other a member of a different category
(e.g., a fish). The logic is straightforward: if infants detected
the category-based commonalities among the familiarization
objects, then they should distinguish the novel from familiar test
object (as indexed by a reliable looking preference, i.e., longer
looking time, for the novel object); if infants failed to detect
the familiarization category, then they should fail to distinguish
between the novel and familiar images. This task also allows the
effect of auditory signals on object categorization to be examined:
with infants viewing the same visual images in the same
paradigm, the sounds paired with the familiarization images can
be systematically manipulated. With this uniform design, the
effect of different auditory signals on object categorization can
be directly compared, even across studies by comparison of effect
sizes (Woodruff Carr et al., 2021b).

Studies utilizing this task offer compelling evidence that
infants’ categorization is influenced by listening to language. For
infants as young as 3- and 4-months, listening to their native
language boosts their performance in object categorization, and
does so in a way that carefully-matched acoustic signals (sine-
wave tone sequences, backward speech) do not (Ferry et al., 2010,
2013). Moreover, this link to cognition is shaped by infant’s own
language experience. For 3- to 4-month-old infants acquiring
English, listening to either English or German (a “typological
cousin” to their native English with similar rhythmic properties)
facilitates object categorization in the same task. In contrast,
listening to Cantonese (a language typologically and rhythmically
distant from English) fails to support object categorization
in this task (Perszyk and Waxman, 2019). Apparently, then,
infants’ increasingly precise perceptual tuning to their native
language (Werker and Tees, 1984; Kuhl and Rivera-Gaxiola,
2008; Peña et al., 2010; Werker, 2018) has powerful downstream

consequences beyond perception alone; it also sets boundaries on
which other language(s) support infant cognition.

Surprisingly, however, infants’ earliest link is not restricted to
language alone. Even at 4 months, as infants are narrowing the
range of human languages they link to cognition, during the same
object categorization task, listening to the vocalizations of non-
human primates (e.g., blue-eyed black lemur, Eulemur macaco
flavifrons) confers the same cognitive advantage as does listening
to their native language (Ferry et al., 2013; Woodruff Carr et al.,
2021b). Importantly, however, this link may be restricted to
vocalizations of primates, our nearest evolutionary relations; It
is not so broad as to include vocalization of birds (e.g., zebra-
finches, Taniopygia guttata).

Taken together, these findings raise a compelling new
question. Which acoustic features, if any, are available on the
surface of human and non-human vocalizations to support very
young infants in identifying which vocalizations might serve as
candidate links to cognition (Ferry et al., 2013; Woodruff Carr
et al., 2021b)? Focusing on the language side of this link,
researchers have discovered that a strong sensitivity to rhythm,
available in utero, is essential in the acquisition of language
from the start (May et al., 2011; Langus et al., 2017; Minai
et al., 2017; Gervain et al., 2021). In utero, the womb and other
maternal tissues act as a low-pass acoustic filter, permitting
lower frequency cues including rhythm and stress patterns, but
not the higher-frequency cues that encode segmental detail, to
be transmitted (Lecanuet and Granier-Deferre, 1993). Within
hours of their birth, infants distinguish languages from the same
rhythmic class as their native language, preferring them over
languages with non-native rhythmical patterns (Mehler et al.,
1988; Nazzi et al., 1998). Within the first year of life, rhythm
continues to be instrumental (Christophe et al., 2001), enabling
infants to segment the continuous speech stream into words
(Johnson and Jusczyk, 2001) and to discover other structural
linguistic properties including word order (Gervain and Werker,
2013) and syntactic structures (Nazzi et al., 2000). There is also
strong neurophysiological evidence for the importance of speech
rhythm. Neurons in the auditory cortex oscillate at frequencies
that entrain speech rhythm. This entrainment, which enables
infants to extract hierarchical information, including lexical
stress, syllabic structure and syntactic patterns (Goswami, 2019),
evident already at 4 months and develops throughout infancy
(Attaheri et al., 2022), continues to support language processing
in adulthood (Poeppel and Assaneo, 2020).

Thus, the power of rhythm is clear: Rhythm supports language
acquisition from the start and continues to support language
processing into adulthood (Gleitman andWanner, 1982; Morgan
and Demuth, 1996; Hilton and Goldwater, 2021).

Because rhythm is crucial in early language acquisition, there
is reason to suspect that it may be instrumental in guiding infants
to identify candidate links to cognition. There is strong evidence
that speech rhythm (including that of their native language and
others from the same rhythmic class), engage infant attention
robustly (Jusczyk et al., 1993; Sansavini et al., 1997; Höhle et al.,
2009; Räsänen et al., 2018). Finally, rhythmic properties that
occur in both human language and mammalian vocalizations
have been documented (Kotz et al., 2018; Ravignani et al., 2019).
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This behavioral evidence of infants’ sensitivity to rhythm,
coupled with cross-species findings on shared rhythmic features
across language and non-human vocalizations, leads to an
intriguing hypothesis: that there are rhythmic properties present
at the surface of languages and non-human vocalizations, that
would, in principle, support 3- to 4-month-old infants in
identifying them as candidate links to cognition.

Here, we provide the first test of this hypothesis.
Implementing a supervised machine-learning (ML) approach,
we trained a series of ML models, using acoustic features derived
from a collection of audio samples of human languages and non-
human vocalizations, to classify samples into classes of signals
that either support infant cognition (i.e., English, German, and
lemur vocalizations) or do not (i.e., Cantonese, and zebra finch
vocalizations), from the vantage point of 3- to 4-month-old
English-acquiring infants (Ferry et al., 2010, 2013; Perszyk
and Waxman, 2016, 2019; Woodruff Carr et al., 2021b). With
these models, we tested the hypothesis that rhythmic features,
present at the surface of the input, support the training of the
distinguishing signals that do, and do not, support cognition.
As comparison, we also tested two other fundamental classes
of vocal properties, namely (1) spectral envelope features and
(2) pitch features. Spectral envelope features are associated with
vocal configurations that differ across languages segmentally
(e.g., in terms of consonant and vowel repertoire) and across
species (e.g., laryngeal vs. syringeal vocalizations) (Mogran et al.,
2004; Cheng et al., 2012; Andén and Mallat, 2014; Fedurek et al.,
2016). Pitch features represent fundamental vocal properties
across species (Belin, 2006), as well as speech intonation, another
fundamental aspect of prosody central to infant language
acquisition (Nooteboom, 1997).

2. METHODS

2.1. Materials: Vocalization Dataset
Our modeling dataset consisted of a total of 3,197 audio samples
(Table 1) of human languages and non-human vocalizations for
which links to cognition (or the lack thereof) have been attested
behaviorally thus far in 4-month-old infants (Ferry et al., 2010,
2013; Perszyk and Waxman, 2016, 2019; Woodruff Carr et al.,
2021b).

Language audio samples were utterance-length recordings
produced by multiple female native speakers of English, German,
and Cantonese, in their respective languages, using an infant
directed speech (IDS) register in interactions with a young
child. These audio samples were high-quality recordings from
three different publicly available or private IDS corpora. Samples
of American English were parts of a multilanguage corpora
collected for the purpose of examining aspects of universality of
IDS across cultures and societies (Hilton et al., 2022). Samples
of German were from the Konstanz Prosodically Annotated
InfantDirected Speech (KIDS) Corpus (Zahner et al., 2016),
collected from a semi- structured mother-infant play situation
where mothers were given a picture book and some other
toys, which they could use according to their infant’s interest.
Cantonese samples were from the dataset of a study examining
functions of acoustic-phonetic modifications in IDS (Wang et al.,

2021). The Cantonese IDS samples were collected from a semi-
structured caregiver-child interaction task, where various toys
were given to the female caregiver to elicit keywords of interest,
while she played with the child.

Audio samples of non-human vocalizations consisted
of lemur and zebra finch vocalizations. Samples of lemur
vocalizations were from a private collection of lemur
vocalizations collected for a sound art project (Mercer,
2012), collected from single semi-free-range lemurs from the
lemur habitat in the Duke University Lemur Center. Zebra finch
vocalization samples were from a publicly available database
of zebra finch songs (Laboratory of Vocal Learning at Hunter
College, 2015), which have also been analyzed in prior acoustic
studies (Tchernichovski et al., 2001; Isomura et al., 2019).

Descriptive statistics of our vocalization dataset are presented
in Table 1.

2.2. Acoustic Feature Extraction
A series of multivariate acoustic features were extracted from
each of the vocalization samples, to serve as input in subsequent
ML classification. Before feature extraction, all audio samples
were first normalized in intensity (80 dB) and resampled to
a sampling rate of 22,050 Hz. Since the duration of each
vocalization sample varies, the duration of each vocalization was
normalized by repeating the audio samples until it reaches 9.54
s (i.e., samples), the maximum duration among all vocalization
samples. Next, from each time-normalized vocalization sample,
we extracted three series of acoustic features that have been
shown to primarily represent rhythmic, spectral envelope, or pitch
information, respectively (e.g., Hilton et al., 2022). The three
series of acoustic features.

First, for rhythmic features: four types of acoustic features were
derived from all vocalization samples to comprehensively capture
aspects of rhythm, namely:

1. The speech envelope spectrum (ENV) represents temporal
regularities correlating to rhythmic properties of the signal
(Tilsen and Johnson, 2008; Poeppel and Assaneo, 2020; Hilton
and Goldwater, 2021). For each vocalization sample, the
vocalic energy amplitude envelope was first derived. To derive
the envelope, the raw time series was first chunked into
consecutive bins of 1 s. Following Tilsen and Arvaniti (2013),
the time series of each chunk was filtered with a passband
of 400–4,000 Hz to de-emphasize non-vocalic energy such
as glottal energy (including the f0) and obstruent noise. The
bandpass-filtered signal was then low-pass filtered with a
cutoff of 10 Hz to represent the envelope. The frequency
decomposition of the envelope was then computed. First, the
envelope was downsampled by a factor of 100 and windowed
using a Tukey window (r = 0.1) to aid further spectral analyses.
The envelope was then normalized by subtracting the mean
and rescaled to have minimum and maximum values of −1
and 1, respectively. A fast Fourier transform was first applied
to the normalized envelope which was also zero-padded to
a 2,048-sample window. The spectra across all 1-s chunks
were then averaged to form the envelope spectrum of the
vocalization sample and included as features.
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2. The intrinsic mode functions (IMFs) were further computed
from the time-varying speech envelope (as described above)
using empirical mode decomposition (EMD), representing
syllabic (IMF1) and supra-syllabic-level (IMF2) fluctuations
relevant to speech rhythm (Tilsen and Arvaniti, 2013).
The frequency decompositions of IMF1 and IMF2 (i.e., the
averaged power spectrum density of 1–10 Hz from the
frequency decomposition all IMF1s and IMF2s across all 1-
s envelope bins of each vocalization sample) were included
as features. We selected a bin duration of 1 s to maximally
eliminate the representations of slower prosodic information
(e.g., intonation) and mixtures of tempos and variations in
rhythmicity not relevant to the syllabic and supra-syllabic
rhythm (Tilsen and Arvaniti, 2013).

3. The temporal modulation spectrum (TMS) is the frequency
decomposition of the temporal envelope of a signal that
reflects how fast sound intensity fluctuates over time (Ding
et al., 2017). Temporal modulation of lower frequencies (<32
Hz) is a primary acoustic correlate of perceived rhythm
in speech (Greenberg et al., 2003; Goswami and Leong,
2016), which contributes to speech intelligibility (Elliott and
Theunissen, 2009). For each vocalization sample, the raw
time series was first chunked into consecutive bins of 1 s.
The TMS of each 1-s bin was then computed using the
procedure and MATLAB script from Ding et al. (2017). In the
procedure, the sound signal in each bin was first decomposed
into narrow frequency bands using a cochlear model and
then from each band the temporal envelope was extracted.
The extracted envelopes were rescaled using a logarithmic
function, and were then converted into the frequency domain
by the Discrete Fourier Transform (DFT). The TMS was
the root-mean-square of the DFT of all narrowband power
envelopes. The TMS features of each vocalization sample were
taken as the average TMS of all bins.

4. The wavelet time scattering (WTS) representations are
low-variance representations of time-frequency properties
of sounds including amplitude and frequency modulations
of acoustic signals (Andén and Mallat, 2014; Andén et al.,
2015). The WTS is resistant to time-warping deformations,
and is therefore advantageous to be used in machine
learning since as class discriminability is not sacrificed in the
transformation. The WTS has been used in machine-learning
work in phoneme recognition and music genre classification
(Andén and Mallat, 2014), and more recently, in the detection
of speech impairments based on speech signals (Lauraitis
et al., 2020). WTS representations of each vocalization
sample were computed using the scatteringTransform
function on MATLAB, averaged across WTS transformations
on consecutive 1-s chunks of the raw time series. In the
WTS transformation, the acoustic signal was decomposed by
filtering the time series signal using a constant-Q wavelet filter
bank. Different layers of wavelet convolution transform the
signal into scattering coefficients consistent of multiple orders.
The second-order scattering coefficients (WTS2), representing
larger-scale acoustic structures like amplitude and frequency
modulation (Andén and Mallat, 2014), were taken
as features.

Second, for spectral envelope features: two types of acoustic
features were derived from all vocalization samples to
comprehensively capture acoustic properties representing
vocal configurations:

1. The mel-frequency cepstral coefficients (MFCC) are cepstral
representations of the audio sample that concisely describe the
overall shape of a spectral envelope as perceived by human.
While the MFCC has been the state-of-the-art of speech
recognition, representing configurations of the vocal tract in
speech, it has also been used to represent configurations of
the vocal tract across other mammalian species, including
primates (Fedurek et al., 2016). The MFCC is also a good
representation of the syringeal properties of birds (Cheng
et al., 2012). We derived the MFCC using the mfcc function
of the Audio Toolbox in MATLAB, with analysis windows
that spanned 50 ms and overlapped with adjacent analysis
windows for 25 ms. This function first took the spectrum of
the data in each analysis window using the Fourier transform,
and then filtered the powers of the spectrum through a
mel filter bank, linearly spaced across the first 10 triangular
filters and logarithmically spaced in the remaining filters. The
amplitude of the discrete cosine transform of the logged mel-
transformed spectral powers were taken as the MFCC, and
concatenated across all analysis windows for each vocalization
sample.

2. The fist-order scattering coefficients (WTS1) were features
derived from WTS representations described in the previous
section; these capture the spectral envelope of sounds which
are related to segmental features (i.e., consonants and vowels)
(Andén and Mallat, 2014).

Third, for pitch features, fundamental frequency (f0) contour
for each vocalization sample were derived to represent how
pitch varies across the duration of the vocalization. For each
vocalization sample, a raw f0 contour was first derived using the
pitch function of the Audio Toolbox in MATLAB. f0 values
of the contour were estimated using a Normalized Correlation
Function algorithm (Atal, 1972), with analysis windows that
spanned 50 ms and overlapped with adjacent analysis windows
for 25 ms, and were taken as pitch features.

2.3. Machine Learning Classification
Pipeline
A total of four sets of classification models were performed, each
designed to classify vocalizations that do (+cognition) and do
not (−cognition) support object categorization, from the vantage
point of 4-month-old English-acquiring infants (Ferry et al.,
2010, 2013; Perszyk and Waxman, 2016, 2019; Woodruff Carr
et al., 2021b). We first performed classifications using all classes
of features combined together in a single inclusive model (full
model). Performance of the full model will identify whether these
acoustic properties distinguish vocalizations that support infant
cognition from those that do not. We then performed three more
specific classifications, each using one of the three feature classes
(i.e., spectral envelope, rhythmic, or pitch features). Performance
of these models will identify which classes of acoustic features, if
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any, successfully distinguish vocalizations that support cognition
from those that do not.

Since the number of vocalizations varied across types (see
Table 1), a Monte Carlo cross-validation (MCCV) procedure
was performed to avoid imbalanced classification. The MCCV
involved an undersampling procedure which randomly selected
120 vocalization samples each from those that do (English,
German, and Lemur vocalizations) and do not (Cantonese and
Zebra Finch vocalizations) support cognition (i.e., a total of 240
samples). Each type of vocalizations was represented equally in
the two classes (i.e., 60 Cantonese, 60 Zebra Finch vocalization,
40 English, 40 German, and 40 lemur vocalization samples). The
240 samples were then split into training and testing sets with
stratified sampling in a 75:25 ratio. The MCCV also allowed us
to minimize optimistic bias in the classification (Raschka, 2018)
so as to objectively evaluate its performance. 100 iterations of
MCCV were performed.

In each iteration of MCCV, a principal component analysis
(PCA) was first performed on the input acoustic features of the
particular model, so as to reduce the dimensionality of the data.
PCAwas performed only on the training set to avoid data leakage.
Principal component (PC) scores that collectively explain 95% of
total variance of the training set was selected as training features
for subsequent classification, whereas acoustic features from the
test set were separately transformed into PC scores using the
transformation matrix of the PCA results.

Classification was then performed using an ensemble
modeling approach of ML, which selected the optimal classifier
for the particular MCCV sub-sample, out of a classifier array
of: (1) LASSO, (2) decision tree (DT), (3) support vector
machine (SVM), (4) ridge regression (Ridge), and (5) Naïve
Bayes (NBC). The selection of the optimal classifier was
performed using a nested four-fold cross-validation procedure,
which further divided the test set into four-folds. The five
classifiers were trained using three out of the four-folds of
the data to classify vocalizations that do and do not support
cognition, while being blind to the actual specific vocalization
type (i.e., language or non-human species). The training of
these classifiers was then validated on the remaining fold.
The process was repeated four times until all four-folds
were validated. To maximize classification performance, hyper-
parameter tuning for each classifier was also performed during
the same nested cross-validation procedure using a grid search
approach, which repeated the training and validation using all
combinations of the following hyper-parameters: (1) LASSO
(λ:{0.1,1,10,100}); (2) DT (minimum leaf size, 10 intervals in the
log-scaled range between 1 and 67); (3) SVM (C: {0.01,0.1,1,10};
Kernel: {linear, rbf}); (4) Ridge (λ:{0.1,1,10,100}); (5) NBC:
normal, kernel NBC). The combination of classifier and hyper-
parameters which achieved the highest accuracy on the validation
across the four-folds were selected as optimal. The optimal
classifier and hyper-parameters were then used for training
on the whole training set, and were then used to predict the
labels of the test set. Based on such prediction, metrics of
classification performance were computed, namely (1) Area
Under the Curve (AUC) of a Receiver Operating Characteristics
curve, (2) prediction accuracy (ACC), (3) sensitivity, and (4)

TABLE 1 | Descriptive statistics of dataset for vocalizations that do (+) and do not

(−) support object categorization, from the vantage point of 4-month-old

English-acquiring infants.

Vocalization Label n Duration (s):

Mean (SD)

Human English + 703 1.23 (0.78)

German + 369 2.62 (1.95)

Cantonese − 1,634 1.94 (0.99)

Non-human Lemur + 122 1.55 (0.48)

Finch − 369 9.54 (4.59)

specificity. Overall performance of each model was computed by
averaging the AUC, ACC, sensitivity, and specificity values of all
100 MCCV iterations.

Schema of the MCCV and nested cross-validation procedure
is visualized in Figure 1.

Performance of each model was further evaluated using
a permutation approach, which involved randomizing the
classification labels (+cognition vs. −cognition) while repeating
the classification 1,000 times in each of the 100 MCCV sub-
samples. The percentage of AUC values across all 100,000
permutations (1,000 randomizations × 100 MCCV iterations)
which was equal to or higher than the actual mean AUC value
was taken as the p-value of the model.

All machine learning procedures were performed in
MATLAB, using classifier and hyperparameter tuning, and
PCA functions provided by the Statistics and Machine Learning
Toolbox.

3. RESULTS

Classification metrics are presented in Table 2. Figure 2 presents
the confusion matrices on the percentage of each type of
vocalizations being classified as those which do and do not
support object categorization across the four models, from the
vantage point of 4-month-old English-acquiring infants.

The full model performed successful classifications, achieving
an AUC of 0.9030, ACC of 0.8913, sensitivity of 0.8937, and
specificity of 0.8890. It also achieved statistical significance,
as per the permutation test on AUC (p < 0.001). This is
consistent with the possibility that there are acoustic properties,
present at the surface among human language and non-human
vocalizations, that contribute to the identification of candidate
links to cognition.

The rhythmic model achieved robust classifications, with
an AUC of 0.9939, ACC of 0.9682, sensitivity of 0.9717, and
specificity of 0.9647. It was statistically significant, as per the
permutation test on AUC (p < 0.001).

Classifications in the spectral envelopemodel were also robust,
achieving an AUC of 0.9955, ACC of 0.9807, sensitivity of 0.9827,
and specificity of 0.9787. Its AUC value also achieved statistical
significance (p < 0.001).

These results may suggest that both rhythmic
and spectral envelope features are among acoustic
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FIGURE 1 | Nested Cross Validation Schema: training classifiers to classify +cognition vs. -cognition vocalizations. Step 1: In each of the 100 outer Monte Carlo

Cross Validation iterations, we used an undersampling procedure to randomly select a total of 240 vocalizations from those that do (+cognition) and do not

(-cognition) support cognition. Each type of vocalization was represented equally within the two classes (i.e., 60 Cantonese, 60 Zebra Finch vocalization, 40 English,

40 German, and 40 lemur vocalization samples). The 240 samples were then split into training and test sets with stratified sampling in a 75:25 ratio. Step 2: A principal

component analysis (PCA) was performed on the input acoustic features (see Section 2.2) of the training set. Principal components (PCs) with scores that collectively

explain 95% of total variance of the training set were selected as training features. Acoustic features from the test set were transformed into PC scores using the PCA

transformation matrix calculated on the training data only. Step 3. An inner four-fold cross-validation procedure was performed to selected the optimal classifier type

and parameters. We divided the training set into four-folds, and trained different combinations of classifier type and parameters using three out of the four folds of the

data. The resulting models were validated on the remaining held-out fold. The process was repeated for four iterations with a different heldout fold each time. The

combination of classifier type and parameters that achieved the highest accuracy in the inner cross-validation were selected as optimal. Step 4: The optimal classifier

and parameters were then used for training on the whole training set. Step 5. The model from Step 4 was validated by predicting the +cognition or -cognition labels of

the test set from step 1, after being transformed in step 2. The numbers calculated in Step 5 are reported in Table 2.

TABLE 2 | Classification results, expressed as median area-under-the-curve

(AUC) values, Sensitivity, Specificity, and Accuracy for each model.

Model AUC Sensitivity Specificity Accuracy

Full 0.9030*** 0.8937 0.8890 0.8913

Rhythmic 0.9939*** 0.9717 0.9647 0.9682

Spectral envelope 0.9955*** 0.9827 0.9787 0.9807

Pitch 0.6287*** 0.6703 0.5093 0.5898

***p < 0.001 in permutation test.

properties shared by human languages and non-human
vocalizations which may be identified as candidate links
to cognition.

In contrast, although the pitch model also achieved statistical
significance (p < 0.001), its AUC of 0.6287 is indicative of “poor
classification” (Hosmer et al., 2013). Its poor performance is also
indicated by its near chance-level ACC (0.5898) and specificity
(0.5093), although its sensitivity (0.6703) is slightly above chance.
These results challenge our prediction that pitch may also play
a role in identifying candidate links to cognition among human
languages and non-human vocalizations.

4. DISCUSSION

The current study was designed to harness the power
of a supervised ML approach to address a fundamental
developmental question: Which acoustic features, if any, are
available on the surface of human and non-human vocalizations
to support very young infants in identifying which vocalizations
might serve as candidate links to cognition. Focusing on three
classes of acoustic information (rhythmic, spectral envelope, and
pitch), we asked (a) whether ML models could be trained to
perform classifications that reliably distinguish vocalizations that
support cognition from those that do not, and (b) whether
rhythm or other any other class(es) of acoustic information was
sufficient to support that classification.

4.1. Full Model
Consider first, the performance of full model. This model,
which used rhythmic, spectral envelope, and pitch features
combined, successfully classified vocalizations that support infant
cognition from those that do not. This success held up both
for human languages and non-human vocalizations. It should
be noted that our models were supervised to utilize just some
of the acoustic features, if any, that are common among
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FIGURE 2 | Confusion Matrices: classification of English, German, Lemur, Cantonese, and Zebra Finch vocalizations into classes of vocalizations that do (+Cognition)

and do not (-Cognition) support object categorization.

vocalizations that support cognition to perform classification.
Therefore, the success of the classification does not implicate
that English and German resemble lemur vocalizations more
than Cantonese overall acoustically. Instead, this successful
classification, especially in the face of the considerable acoustic
variability across these vocalizations, suggests there are indeed
some common acoustic features, available on the surface of
human and non-human vocalizations which support very
young infants in identifying which vocalizations might serve as
candidate links to cognition.

We turn next to test which class(es) of acoustic properties
might best signal these candidate links.

4.2. Rhythmic Model
The rhythmic model, like the full model, achieved robust
classification, successfully distinguishing vocalizations that do,
and do not, support cognition from the vantage point of a 4-
month-old English-acquiring infant (i.e., English, German, and
lemur vocalizations vs. Cantonese and zebra finch vocalizations).

This outcome is consistent with robust evidence of the
importance of rhythmic properties in human languages and non-
human vocalizations. It also mirrors the behavioral evidence
regarding infants’ earliest links to cognition (Perszyk and
Waxman, 2019).

Especially intriguing is that the new evidence, reported here, is
consistent with proposals of parallels between rhythmic features
instrumental to both human and non-human vocalizations
(Ramus et al., 2000; Tincoff et al., 2005; Ravignani et al.,
2019). From an acoustic perspective, non-human animals’
sensitivity to rhythm is well-documented (Ravignani et al.,
2019). Moreover, parallels in “babbling” of infant bats and
humans suggest that rhythmic motor activity may be foundation
for basic rhythmic structures across mammalian vocalizations
(Knörnschild et al., 2006; Ravignani et al., 2019). In addition,
human and non-human animals alike demonstrate neural
entrainment to rhythm in vocalizations (Patel et al., 2009;
Schachner et al., 2009). In humans, these neural oscillations
are essential to identifying linguistic structure (Poeppel and
Assaneo, 2020). Neural entrainment appears to be subserved
by the frontostriatal brain circuitry in both humans and non-
human animals, suggesting that it is not language specific (Kotz
et al., 2018). This observation raises the intriguing possibility
that for infants as young as 3- or 4-months of age, who cannot
yet parse individual words from the ongoing sound stream,

rhythm provides an entry point for identifying candidate links to
cognition by establishing an early template according to infant’s
native rhythmic properties. Auditory signals that may conform to
this native rhythmic template, such as speech from rhythmically
similar foreign languages or even non-human vocalizations, may
therefore be initially linked to cognition.

Indeed, we suspect that this early native rhythmic template
may engage attentional mechanisms in such a way as to
support infants’ precocious language-cognition link. There is
considerable evidence that rhythm engages infant attention
(Jusczyk et al., 1993; Sansavini et al., 1997; Höhle et al., 2009;
Räsänen et al., 2018) and that attention to speech rhythm is
crucial to the acquisition of language (Gervain et al., 2021),
highlighting distinct linguistic elements and relations among
them (Soderstrom, 2007; Spinelli et al., 2017). But even more
to the point, listening to their native language and to lemur
vocalizations engages infants’ attention neurally, as indexed by
4–9 Hz neural oscillatory activities (Woodruff Carr et al., 2021a).
This rhythm-sensitive heightened attention may be a mechanism
that supports infants’ identification of which signals are candidate
links to cognition. Additional work is required to clarify how
attentional mechanisms and rhythmic properties guide infants as
they discover the language-cognition link.

4.3. Spectral Envelope Model
The results of the ML model reported here suggest that
information in the spectral envelope also yielded robust
classifications. This outcome, although unanticipated, suggests
that spectral envelope properties successfully classified
vocalizations that support infant cognition from those that
do not. This is interesting because spectral envelope features
richly represent acoustic properties of speech segments (Mogran
et al., 2004; Andén and Mallat, 2014) that young infants may not
yet represent. Infants’ sensitivity to spectral properties appears
to emerge later than their sensitivity to rhythmic features (Kuhl
and Rivera-Gaxiola, 2008; Werker, 2018). Thus, the current ML
results may best be interpreted to suggest that spectral envelope
features, whenever they do become available to infants, may be
among those infants use to identify candidate links to cognition.

The success of the spectral envelope model in classifying
the non-human vocalizations is not unexpected. Spectral
envelope features represent vocal configurations across species
(Mogran et al., 2004; Fedurek et al., 2016). For example,
the physiologic distinction laryngeal (human and non-human
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primates) and syringeal (birds) vocalizations may be represented
acoustically in spectral envelope features in the model. This
raises an intriguing possibility: that infants’ earliest links to
cognition reflect an evolutionarily ancestral route, one that
confers cognitive advantage through primate-general attentional
mechanisms (Perszyk and Waxman, 2018).

The surprising success of the spectral envelope model
certainly opens new avenues for investigation. For example,
in future work, it will be important to assess whether lemur
vocalizations have the same facilitative effect on categorization
in infants acquiring languages, like Cantonese, with both
segmental inventories (hence spectral envelope features) and
speech rhythm that differ systematically from those of English.
Meanwhile, it remains an open question whether there are
other aspects of spectral envelope properties potentially common
between Cantonese and lemur vocalizations, both as mammalian
laryngeal vocalizations. One intriguing possibility is that lemur
vocalizations do confer some cognitive advantage to Cantonese-
acquiring infants, but perhaps less robustly without lemur
vocalizations conforming to the rhythmic template of Cantonese.
Delineating these possibilities would further shed light on the
mechanistic nature of the pathway that enables infant’s earliest
links to cognition.

4.4. Pitch Model
Pitch features, which like rhythm are also related to prosody,
yielded surprisingly low classification performance. This suggests
that there may be few, if any, surface pitch-relevant acoustic
properties that distinguish between vocalizations that do and
do not support cognition, despite that pitch is one of the most
prominent features of infant-direct speech (Hilton et al., 2022)
also known to engage infant’s attention (Sullivan and Horowitz,
1983). There are several possible accounts for this outcome. First,
it may be related to the broad acoustic variability in our corpus.
After all, lemur vocalizations have higher average pitch and
broader pitch range than human vocalizations (Woodruff Carr
et al., 2021b). Alternatively, this may reflect a limitation more
particular to our corpus. We were only able to capture the f0
contour to represent speech intonation and pitch properties of
vocalization in the current models. As a result, we may have
failed to capture the more dynamic intonational properties of
these signals. The limited amount of information represented in
the f0 contour as compared to rhythmic and spectral envelope
features may also have hindered classification performance
from a computational perspective. Addressing this question will
require additional work that incorporates a broader and more
dynamic set of measures that tap into more fine-grained vocalic
properties of both human and non-human vocalizations.

4.5. Limitations and Future Directions
The ML approach invoked here suggests that there are indeed
certain acoustic properties, present in the surface of human
and non-human vocalizations, that are available, in principle,
to support infants’ identification of which vocalizations link to
cognition.

This outcome, important in itself, raises new questions for
future work. For example, it will be important to discover

whether, as infants forge their earliest links to cognition, they use
the same mechanisms, or different ones, in identifying candidate
human languages and non-human vocalizations. There is reason
to suspect that there may be two distinct routes, one governing
the links from language and another governing the candidate
links from non-human vocalizations (Owren et al., 2011; Perszyk
and Waxman, 2018). First, cross-species neurophysiological
work has identified two neural pathways in response to human
vocal communication: a subcortical pathway shared among
human and non-human primates for affective vocalizations, and
another cortical pathway that appears to be specific to humans
for speech (Owren et al., 2011; Ackermann et al., 2014). Second,
neural and behavioral evidence from 4- to 6-month-old English-
acquiring infants is consistent with the possibility that there are
two distinct routes (Ferry et al., 2013; Perszyk and Waxman,
2019;Woodruff Carr et al., 2021b). To examine this hypothesis, it
will fruitful for future studies to apply a ML approach separately
on human languages and non-human vocalizations, as well as
modeling from the vantage points of infants acquiring a language
other than English. Doing so will not only merely require a larger
database of human and non-human vocalizations, but crucially
broader empirical behavioral evidence delineating natural classes
of human and non-human vocalizations that do and do not
support cognition, from the vantage points of infants acquiring
different varieties of languages.

While future modeling would benefit from an expansion of
empirical evidence, results of the current model nevertheless
shed light on future directions of empirical studies on infants’
language-cognition link. Indeed, the features identified in the
current models may not represent veridically the acoustic
features actually utilized by infants as they evaluate candidate
links to cognition. Nevertheless, future studies could target
rhythm and spectral envelope features to manipulate in the
stimuli in object categorization experiments (e.g., testing with
low-pass filtered vocalizations or speech chimera), so as to
pinpoint acoustic properties infants utilize to evaluate candidate
links to cognition empirically. Further, by testing vocalizations of
a larger variety of mammalian and non-human primate species,
future studies could also shed light on the extent to which the
link governing non-human vocalizations and cognition in young
infants is modulated by the etiological distance between the
animal and humans, so as to examine the hypothesis that the
link governing non-human vocalizations and cognition is an
ancestral pathway that reflects the residue of evolution (Perszyk
and Waxman, 2018).

5. CONCLUSION

The current results offer support for the proposal that rhythmic
and spectral envelope features, available in the input of human
language and of non-human linguistic vocalizations, may guide
infants in identifying which signals are candidate links to
cognition. This in principle evidence, important in itself, is
also consistent with the possibility that infants’ earliest links to
cognition may be subserved by their sensitivity to rhythmic and
spectral envelope properties of sounds.
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